Archeops

PI: Alain Benoit (Grenoble)

FRANCE

LPSC, CRTBT, LAOG (Grenoble), IAS, LAL, (Orsay), SPP-Saclay, IAP, CDF (Paris), CESR, LATT (Toulouse)

ITALY

Univ. La Sapienza (Roma), IROE-CNR (Firenze)

UK

Cardiff Astrophysics Group

USA

CALTECH, JPL, University of Minnesota

RUSSIA

Landau inst. theoretical physics

And also,

CNES

www.archeops.org

Planck Optics 2006 6.12.2006

Archeops main points

- Same concept as Planck HFI Off-axis Gregorian telescope Spider web bolometers at 100 mK
- Large sky coverage : 30% Large circles on the sky during night-time 19 hour flight during Arctic night
- High angular resolution 10-12 arcmin
- Multiband photometer

22 bolometers 4 frequency bands : 143, 217, 353, 545 GHz

Polarized 353 GHz Channel

Matthieu Tristram (LAL)

Flight	Trapani	KS1	KS2	KS3
date	july 1999	jan 2001	jan 2002	feb 2002
duration	4h	7.5h	2h	12h
location	Trapani	Kiruna	Kiruna	Kiruna
	(Italy)	(Sweden)	(Sweden)	(Sweden)

used for early tests by Alcatel (ground sidelobe measurements)

- flight during arctic night
- the optical axis sweeps the sky at 2 rpm describing large circles on the sky
- constant elevation (41°) allowing observation of Jupiter & Saturn
- ~ 30% of the sky in 12 hours
- pointing reconstruction using stellar sensor (rms < 1.2 arcmin)

Planck Optics 2006 6.12.2006

resolution (goal) [arcmin]

channel	Archeops	Planck-HFI	
143	~12' (8')	7.1'	
217	~14' (8')	5.0'	
353	~12' (8')	5.0'	
545	~20' (8')	5.0'	

bolometers and cold optics

Archeops

- Spider-web bolometers
 - 6 @ 143 GHz
 - 8 @ 217 GHz
 - 6 @ 353 GHz (OMT) polarization
 - 1 @ 545 GHz
- some 217 and 545 multimode
- 4 blind
- 7 thermometers (0.1, 1.6, 10 K)
- best sensibility 90 mK_{CMB}.s^{1/2}

(planck-HFI requirement)

Polarized bolometers OMT

original design for Planck-HFI polarized measurements (before PSB)

353 GHz (6 = 3 OMT pairs)

Archeops

Matthieu Tristram (LAL)

Ground-based calibration

polarized calibration

laboratory measurements

- transmission
- cross polarization (< 1%)
- angle of OMT grids determined to within 3°

Radar Hill

linearly polarized blackbody source for an additional pre-flight polarization calibration

- verification of angles
- I,Q,U beams measurements (agreed within 20%)

Matthieu Tristram (LAL)

Ground-based calibration

beam measurements from Radar Hill (Kiruna)

S.Henrot-Versillé (Archeops Meeting 02/26/2001)

Archeops

Focal Plane KS1 Reconstruction of the Archeops Focal Plane with Jupiter crossings

KS2 Crash

deformation of the gondola structure

defocusing

no time to retune between KS2 and KS3

Matthieu Tristram (LAL)

Focal plane KS3 *Reconstruction of the Archeops Focal Plane with Jupiter crossings*

time constants have been deconvolved iteratively

Macias-Perez et al., 2006, A&A, submitted

Archeops

beam pattern

for CMB and dust emission analysis

Matthieu Tristram (LAL)

Tristram et al., 2004, PRD, 69, 123008

takes into account the asymmetry of the beams projected through the scanning strategy

<u>method</u>

- decomposition of the asymmetric beam into a sum of Gaussians
- convolution in the spherical harmonic space

asymmetric beam smoothing effect in multipoles

beam modelisation

• goal

accurate reproduction of all beam shapes with Gaussian functions for map-making purposes

• mean

simultaneous fit of 10 symmetric Gaussians

beam modelisation

Archeops

Matthieu Tristram (LAL)

Asymfast Beam transfer function

Tristram et al., 2004, PRD, 69, 123008

Matthieu Tristram (LAL)

Conclusions

ground-based calibration

difficult challenge. We use in-flight measurements for data reduction (except polarizer angle). Ground-based measurements more of a check-up.

resolution

goals not achieved for KS3 flight due to defocusing

beam shape

important asymmetry for multimode horns

• effects on CI

We take into account asymmetry using simulations (Asymfast)

needs for a sophisticate main beam analysis

References

www.archeops.org

- Archeops: A High Resolution, Large Sky Coverage Balloon Experiment for Mapping CMB Anisotropies Benoit et al., 2002, Astropart. Phys. 17, 101-124
- First Detection of Polarization of the Submillimetre Diffuse Galactic Dust Emission by Archeops Benoit et al., 2004, A&A 424 571
- The CMB power spectrum from an improved analysis of the Archeops data Tristram et al., 2005, A&A 436 785
- Temperature and polarization angular power spectra of Galactic dust radiation at 353 GHz as measured by Archeops
 Ponthieu et al., 2005, A&A 444, 327
- Archeops In-flight Performance, Data Processing and Map Making Macías-Pérez et al., 2006, A&A submitted

